## Friday, April 25, 2014

### More Triangle Problems, 6

Category: Plane Geometry, Trigonometry

"Published in Newark, California, USA"

Show that, for the two triangles ABC and AXY (see figure),

 Photo by Math Principles in Everyday Life

Solution:

Since the altitude of the two triangles are not given, then we can draw the altitudes from points B and X as follows

 Photo by Math Principles in Everyday Life

Consider ∆ABC:

but

then the above equation becomes

Consider ∆AXY:

but

then the above equation becomes

Therefore,

## Thursday, April 24, 2014

### Circle Inscribed - Triangle Problems

Category: Plane Geometry

"Published in Newark, California, USA"

The base of an isosceles triangle is 16 in. and the altitude is 15 in. Find the radius of the inscribed circle.

Solution:

To illustrate the problem, it is better to draw the figure as follows

 Photo by Math Principles in Everyday Life

The area of ∆ABC is

 Photo by Math Principles in Everyday Life

By using Pythagorean Theorem, we can solve for the two legs of an isosceles triangle as follows

Next, draw the angle bisectors of an isosceles traingle as follows

 Photo by Math Principles in Everyday Life

The intersection of the angle bisectors of an isosceles triangle is the center of an inscribed circle which is point O. From point O, draw a line which is perpendicular to AB, draw a line which is perpendicular to AC, and draw a line which is perpendicular to BC. These three lines will be the radius of a circle.

 Photo by Math Principles in Everyday Life

The total area of an isosceles triangle is equal to the area of three triangles whose vertex is point O. Therefore, the radius of an inscribed circle is

## Wednesday, April 23, 2014

### Circle - Rectangle Problems

Category: Plane Geometry

"Published in Newark, California, USA"

The quarter mile race track shown in the figure has parallel sides AB and CD, each 315 ft. long. If the ends are semicircles, find the area bounded by the track. If a race is run from S to D by way of C, find the length of the race in yards, given that arc SC = 44/67 x arc AC. (1 mile = 5280 ft.)

 Photo by Math Principles in Everyday Life

Solution:

The quarter mile race track consists of  two semicircles and a rectangle. Let's divide the given figure as follows

 Photo by Math Principles in Everyday Life

Let T = be the total distance of a race which is equal to 0.25 miles
d = be the diameter of the semicircles
C = circumference of a circle which is equal to the total  length of two arcs of semicircles
A = total area of a quarter mile race track

The total distance of a race in feet is equal to

The total distance of a race is

The total length of the two semicircles is equal to the circumference of a circle because the diameter of the two semicircles is the same which is d. The diameter of the two semicircles or the width of a rectangle is equal to

The total area of a quarter mile race is

The length of a race from S to D by way of C in feet is equal to

The length of a race from S to D by way of C in yards is equal to