Free counters!

Friday, December 14, 2012

Two Coincident Lines

Category: Analytic Geometry, Algebra

"Published in Newark, California, USA"

Find the points of intersection of the following lines:

                                2x - y = 8

                              4x - 2y = 16

Solution:

Since the given equations are all first degree, then they are linear equations. They are straight lines. We can graph the two lines by getting their slope and y-intercept. 

For 2x - y = 8

                                  2x - y = 8

                                        -y = -2x + 8

                                         y = 2x - 8

                                  slope (Δy/Δx), m = 2

                                  y-intercept, b = -8

To trace the graph, plot -8 at the y-axis. This is your first point of the line (0, -8). Next, use the slope to get the second point. From the first point, count 1 unit to the right and then 2 units upward. 

For 4x - 2y = 16

                                  4x - 2y = 16

                                       -2y = -4x + 16

                                          y = 2x - 8

                                 slope (Δy/Δx), m = 2

                                  y-intercept, b = -8


To trace the graph, plot -8 at the y-axis. This is your first point of the line (0, -8). Next, use the slope to get the second point. From the first point, count 1 unit to the right and then 2 units upward.


Photo by Math Principles in Everyday Life

From the graph, the two lines are coincide to each other because their slopes and y-intercepts are the same which are 2 and -8. The two lines will have an infinite number of points of intersection. When you solve for x and y from the two given equations, their x, y, and constant will be equal to zero. From the two given equations,

                                  2x - y = 8

                                4x - 2y = 16

Multiply the first equation by 2 and -1 at the second equation. Add the two equations and let's see what will happen to x, y, and constant.

        2 (2x - y = 8)                             4x - 2y = 16
                                         
     -1 (4x - 2y = 16)                         -4x + 2y = -16
                                                   _______________

                                                                  0 = 0

Since everything in the equation are all equal to zero, then there's no way that we can solve for x and y. Therefore, the two lines are coincide to each other.