Free counters!

Saturday, November 30, 2013

Proving Trigonometric Identities, 19

Category: Trigonometry

"Published in Suisun City, California, USA"

Prove that


Solution:

Consider the given equation above


In proving the trigonometric identities, we have to choose the more complicated part which is the left side of the equation. We have to use the principles of simplifying trigonometric functions as much as we can until we get the same equation as the right side of the equation. Let's rewrite the rational and reciprocal functions into its equivalent function as follows






but



Hence, the above equation becomes



Therefore,

 

Friday, November 29, 2013

Proving Trigonometric Identities, 18

Category: Trigonometry

"Published in Suisun City, California, USA"

Prove that


Solution:

Consider the given equation above


In proving the trigonometric identities, we have to choose the more complicated part which is the left side of the equation. We have to use the principles of simplifying trigonometric functions as much as we can until we get the same equation as the right side of the equation. Let's rewrite the left side side of the equation as a square of two terms as follows 





but


Hence, the above equation becomes



Therefore,

 

Thursday, November 28, 2013

Proving Trigonometric Identities, 17

Category: Trigonometry

"Published in Suisun City, California, USA"

Prove that


Solution:

Consider the given equation above


In proving the trigonometric identities, we have to choose the more complicated part. Since both sides of the equation are complicated, then we have to simplify both sides of the equation. We have to use the principles of simplifying trigonometric functions as much as we can until we get the same equation on both sides of the equation. Let's simplify the both sides of the equation as follows



but


Hence the above equation becomes




but 

and

Hence the above equation becomes





but



Hence the above equation becomes



Therefore,

 

Wednesday, November 27, 2013

Proving Trigonometric Identities, 16

Category: Trigonometry

"Published in Suisun City, California, USA"

Prove that


Solution:

Consider the given equation above


In proving the trigonometric identities, we have to choose the more complicated part which is the left side of the equation. We have to use the principles of simplifying trigonometric functions as much as we can until we get the same equation as the right side of the equation. Let's rewrite the rational and reciprocal functions into its equivalent function as follows




but


Hence the above equation becomes



Therefore,