Free counters!

Sunday, November 11, 2012

Sum - Product, Two Angles Formula

Category: Trigonometry

"Published in Newark, California, USA"

On October 9, 2012, we derived the formulas for Sum and Difference of Two Angles Formula as follows:

Sin (θ + ϕ) = Sin θ Cos ϕ + Cos θ Sin ϕ          (equation 1)

Sin (θ - ϕ) = Sin θ Cos ϕ - Cos θ Sin ϕ            (equation 2)

Cos (θ + ϕ) = Cos θ Cos ϕ - Sin θ Sin ϕ          (equation 3)

Cos (θ - ϕ) = Cos θ Cos ϕ + Sin θ Sin ϕ          (equation 4)

If you add equation 1 and equation 2, the equation becomes

Sin (θ + ϕ) + Sin (θ - ϕ) = 2 Sin θ Cos ϕ

Sin θ Cos ϕ = ½ Sin (θ + ϕ) + ½ Sin (θ - ϕ)

If you subtract equation 1 and equation 2, the equation becomes

Sin (θ + ϕ) - Sin (θ - ϕ) = 2 Cos θ Sin ϕ

Cos θ Sin ϕ = ½ Sin (θ + ϕ) - ½ Sin (θ - ϕ)

If you add equation 3 and equation 4, the equation becomes

Cos (θ + ϕ) + Cos (θ - ϕ) = 2 Cos θ Cos ϕ

Cos θ Cos ϕ = ½ Cos (θ + ϕ) + ½ Cos (θ - ϕ)

If you subtract equation 3 and equation 4, the equation becomes

Cos (θ + ϕ) - Cos (θ - ϕ) = - 2 Sin θ Sin ϕ 

Sin θ Sin ϕ = - ½ Cos (θ + ϕ) + ½ Cos (θ - ϕ)

Sin θ Sin ϕ = ½ Cos (θ - ϕ) ½ Cos (θ + ϕ)

Therefore, the formulas for the transformation of Product to Sum of Two Angles are

Sin θ Cos ϕ = ½ Sin (θ + ϕ) + ½ Sin (θ - ϕ)

Cos θ Sin ϕ = ½ Sin (θ + ϕ) - ½ Sin (θ - ϕ)

Cos θ Cos ϕ = ½ Cos (θ + ϕ) + ½ Cos (θ - ϕ)

Sin θ Sin ϕ = ½ Cos (θ - ϕ) ½ Cos (θ + ϕ)

(Note: I strongly suggest that you must remember or memorize these formulas because you will use these formulas often in Integral Calculus especially the integration of product of two trigonometric functions with different angles.)

Consider the following formulas:

Sin (θ + ϕ) + Sin (θ - ϕ) = 2 Sin θ Cos ϕ

Sin (θ + ϕ) - Sin (θ - ϕ) = 2 Cos θ Sin ϕ

Cos (θ + ϕ) + Cos (θ - ϕ) = 2 Cos θ Cos ϕ

Cos (θ + ϕ) - Cos (θ - ϕ) = - 2 Sin θ Sin ϕ 

If x = θ + ϕ and y = θ - ϕ, the values of θ and ϕ are

           x = θ + ϕ                   x = θ + ϕ
           y = θ - ϕ                - (y = θ - ϕ)
        -----------------             -----------------
          x + y = 2 θ                 x - y = 2 ϕ
      
          θ ½ (x + y)             ϕ = ½ (x - y)

Substitute the values of θ + ϕ, θ - ϕ, θ, and ϕ to the four equations above, we have


Sin x + Sin y = 2 Sin ½ (x + y) Cos ½ (x - y)

Sin x - Sin y = 2 Cos ½ (x + y) Sin ½ (x - y)

Cos x + Cos y = 2 Cos ½ (x + y) Cos ½ (x - y)

Cos x - Cos y = - 2 Sin ½ (x + y) Sin ½ (x - y) 

  
Therefore, the formulas for the transformation of Sum to Product of Two Angles are


Sin x + Sin y = 2 Sin ½ (x + y) Cos ½ (x - y)

Sin x - Sin y = 2 Cos ½ (x + y) Sin ½ (x - y)

Cos x + Cos y = 2 Cos ½ (x + y) Cos ½ (x - y)

Cos x - Cos y = - 2 Sin ½ (x + y) Sin ½ (x - y) 

(Note: I strongly suggest that you must remember or memorize these formulas because you will use these formulas also for proving of trigonometric identities.)


Saturday, November 10, 2012

Variable Separation - Arbitrary Constant

Category: Differential Equation, Integral Calculus

"Published in Newark, California, USA"

Find the particular solution for the equation:


when x = 0, y = 0.

Solution:

If you examine the given equation, it is a differential equation because of the presence of y'. The above equation can be written as





You notice that the exponent of e has two terms. The above equation can be written as


Next, arrange the above equation by separation of variables




Consider the left side of the equation. If u = -y, then du = -dy.

Consider the right side of the equation. If u = -x2, then du = - 2x dx.



Integrate both sides of the equation, we have




To solve for the value of C, substitute x = 0 and y = 0 to the above equation






Therefore, the particular solution is 




Friday, November 9, 2012

Simplifying Complex Fraction

Category: Arithmetic

"Published in Newark, California, USA"

Simplify:



Solution:

A complex fraction is a fraction which contains fractions at the numerator and denominator. There's a rule in Mathematics that fractions must be simplified always. A complex fraction must be simplified into a simple fraction. Also, it must be simplified into lowest term. If there are whole numbers and mixed fractions, they must be expressed into improper fractions. For instance, 1 and 2 must be written as


Let's consider the numerator. Their Least Common Denominator (LCD) is 12. The above fraction can be written as


Let's consider the denominator. Their Least Common Denominator (LCD) is 6. The above fraction can be written as




If you divide a fraction with another fraction, the divisor must be written in reciprocal form and perform the multiplication as follows


You noticed that you can cancel 13 and 12 is divisible by 6, the above fraction can be written as



Therefore, the answer is ½