Free counters!

Thursday, August 14, 2014

Trapezoid Prism Problems, 3

Category: Solid Geometry

"Published in Newark, California, USA"

(a) Find the volume of water in a swimming pool with vertical ends and sides. The length measured at the water line is 50 ft. and the breadth is 20 ft. The bottom of the swimming pool is a plane slopping gradually downward so that the depth of the water at one end is 4 ft. and at the other end is 8 ft.
(b) If the sides, ends, and bottom of the swimming pool are constructed of tile blocks whose glazed surface dimensions are 3 in. by 6 in., and if the ends and sides of the pool  extend 2 ft. above the water level, find the number of blocks used if 1/20 of the surface area is covered by sealing material.

Solution:

(a) To illustrate the problem, it is better to draw the figure as follow

Photo by Math Principles in Everyday Life

Did you notice that the swimming pool is a trapezoid prism whose two opposite faces are right trapezoid? Well, the area of the base which is a right trapezoid is





Therefore, the volume of water in a swimming pool which is a trapezoid prism is


 
 
(b) If the ends and sides of the pool extend 2 ft. above the water level, the dimensions of the pool are as follows


Photo by Math Principles in Everyday Life

We need to get the unknown dimensions of the sides of the pool first so that we can solve for the total surface area of the pool especially the area of the bottom of the pool. Let's analyze a surface of the pool as follows

Photo by Math Principles in Everyday Life

By Pythagorean Theorem,







Hence, the total surface area of the pool is


 
 
 
   
The total area of the sealing material used is
 
 
 
   
The total area of the tile blocks used is
 
 
 
   
The area of a tile block is
 
 
 
 
 
   
Therefore, the number of tile blocks used for the pool is
 
 
 
   
The number of tile blocks must be in whole numbers. We have to round off to the nearest ones. The answer is
 

Wednesday, August 13, 2014

Trapezoid Prism Problems, 2

Category: Solid Geometry

"Published in Newark, California, USA"

A contractor agrees to build a dam, 180 ft. long and 20 ft. high, 12 ft. wide at the bottom and 8 ft. wide at the top, for $9.75 a cubic yard. Find his profit if his costs were $10,000.

Solution:

To illustrate the problem, it is better to draw the figure as follows

Photo by Math Principles in Everyday Life

The area of the base which is a trapezoid is





The volume of a dam which is a trapezoid prism is




The volume of a dam in cubic yards is





The labor cost of building a dam is




Therefore, the contractor's profit in building a dam is




Tuesday, August 12, 2014

Triangular Prism Problems, 3

Category: Solid Geometry

"Published in Newark, California, USA"

A trough is formed by nailing together, edge to edge, two boards 11 ft. in length, so that the right section is a right triangle. If 15 gals. of water are poured into the trough and if the trough is held level so that a right section of the water is an isosceles right triangle, how deep is the water? (231 cu. in. = 1 gal.)

Photo by Math Principles in Everyday Life

Solution:

Consider the cross section of a trough which is the base of a triangular prism

Photo by Math Principles in Everyday Life

The cross section area of water in a trough is




The length of a trough in inches is




The volume of water in a trough in cubic inches is




Therefore, the height or deep of water in a trough is