"Published in Newark, California, USA"
Given the figure below:
|  | 
| Photo by Math Principles in Everyday Life | 
1. Given AF ≅ AD, and FE ≅ ED. Prove that ΔAFE ≅ ΔAED.
2. Given ABDE is a square and ΔACD is an isosceles triangle.  Prove that ΔAED ≅ ΔBDC.
3. Given ABDE is a square. Prove that ΔABD ≅ ΔADE.
4. Given AB ≅ DE, AD bisects ∠BAE and ∠BDE. Prove that ΔBAD ≅ ΔADE.
5. Given AF ≅ DC and DC ≅ ED. Prove that ΔAFD ≅ ΔACD.
Solution:
Consider Case 1:
|  | 
| Photo by Math Principles in Everyday Life | 
Proof:
1. Statement: AF ≅ AD and FE ≅ ED.
    Reason: Given items.
2. Statement: AE ≅ AE. 
    Reason: Reflexive property of congruence.
Therefore, ΔAFE ≅ ΔAED.
Reason: SSS (Side-Side-Side) Postulate
Consider Case 2:
|  | 
| Photo by Math Principles in Everyday Life | 
Proof:
1. Statement: ABDE is a square and ΔACD is an isosceles triangle.
    Reason: Given items.
2. Statement: AE ≅ BD ≅ AB ≅ ED
    Reason: All sides of a square are congruent.
3. Statement: AD ≅ AD
    Reason: Reflexive property of congruence.
4. Statement: ∠EDA ≅ ∠BAD
    Reason: The alternating interior angles of a two parallel lines that passes a transversal line are congruent. The two opposite sides of a square are parallel.
5. Statement: ∠DAB ≅ ∠BCD
    Reason: The base angles of an isosceles triangle are congruent.
6. Statement: AD ≅ DC
    Reason: The two sides of an isosceles triangle are congruent.
7. Statement: AB ≅ BC
    Reason: The base altitude (BD) of an isosceles triangle bisects the line segment (AC) of a base.
Therefore, ΔAED ≅ ΔBDC.
Reason: SAS (Side-Angle-Side) Postulate
Consider Case 3:
|  | 
| Photo by Math Principles in Everyday Life | 
Proof:
1. Statement: ABDE is a square.
    Reason: Given item.
2. Statement: AE ≅ BD ≅ AB ≅ ED
    Reason: All sides of a square are congruent.
3. Statement: AD ≅ AD
    Reason: Reflexive property of congruence.
Therefore, ΔABD ≅ ΔAED.
Reason: SSS (Side-Side-Side) Postulate
Consider Case 4:
|  | 
| Photo by Math Principles in Everyday Life | 
Proof:
1. Statement: AB ≅ ED, ∠EAD ≅ ∠BAD, and ∠BDA ≅ ∠ADE.
    Reason: Given items.
2. Statement: AD ≅ AD
    Reason: Reflexive property of congruence.
Therefore, ΔBAD ≅ ΔADE.
Reason, ASA (Angle-Side-Angle) Postulate.
Consider Case 5:
|  | 
| Photo by Math Principles in Everyday Life | 
Proof:
1. Statement: AF ≅ DC and DC ≅ ED.
    Reason: Given items.
2. Statement: AB ≅ ED and AE ≅ BD.
    Reason: The opposite sides of a rectangle are congruent.
3. Statement: AD ≅ AD
    Reason: Reflexive property of congruence.
4. Statement: AE ┴ ED and BD ┴ AB.
    Reason: The sides of a rectangle ABDE are perpendicular to each other.
5. Statement: ∠FEA ≅ ∠AED, and ∠ABD ≅ ∠DBC.
    Reason: The sum of the supplementary angles is 180. If ∠AED and ∠ABD are 90°, then ∠FEA and ∠DBC msut be 90°.
6. Statement: ΔFEA and ΔDBC are right triangles.
    Reason: One of the angles of each triangles is 90°.
7. Statement: FE ≅ BC
    Reason: Since ΔFEA and ΔDBC are right triangles, we can use Pythagorean Theorem (c2 = a2 + b2) to solve the other side of a right triangle. If AF ≅ CD and AE ≅ BD, then FE ≅ BC. 
8. Statement: FD ≅ AC
    Reason: Since FE ≅ BC and ED ≅ AB, then FE + ED ≅ AB + BC. 
Therefore, ΔAFD ≅ ΔACD.
Reason: SSS (Side-Side-Side) Postulate
