Category: Trigonometry, Algebra
"Published in Newark, California, USA"
Find the values of x in the range from 0º to 360º for
Sin x + Sin 2x + Sin 3x = 0
Solution:
Consider the given equation
Sin x + Sin 2x + Sin 3x = 0
Apply the Sum and Difference of Two Angles Formula and Double Angle Formula for the above equation
Sin x + 2 Sin x Cos x + Sin (x + 2x) = 0
Sin x + 2 Sin x Cos x + Sin x Cos 2x + Cos x Sin 2x = 0
Sin x + 2 Sin x Cos x + Sin x (Cos2 x - Sin2 x) + Cos x (2 Sin x Cos x) = 0
Sin x + 2 Sin x Cos x + Sin x Cos2 x - Sin3 x + 2 Sin x Cos2 x = 0
Sin x + 2 Sin x Cos x + 3 Sin x Cos2 x - Sin3 x = 0
Take out their common factor which is Sin x, we have
Sin x (1 + 2 Cos x + 3 Cos2 x - Sin2 x) = 0
Sin x [1 + 2 Cos x + 3 Cos2 x - (1 - Cos2 x)] = 0
Sin x (1 + 2 Cos x + 3 Cos2 x - 1 + Cos2 x) = 0
Sin x (2 Cos x + 4 Cos2 x) = 0
(Sin x )(2 Cos x)(1 + 2 Cos x) = 0
Equate each factor in zero
For Sin x = 0
x = Sin-1 0
x = 0º, 180º, 360º
For 2 Cos x = 0
Cos x = 0
x = Cos-1 0
x = 90º, 270º
For 1 + 2 Cos x = 0
2 Cos x = -1
Cos x = - ½
x = Cos-1 -½
x = 120º, 240º
Therefore,
x = 0º, 90º, 120º, 180º, 240º, 270º, and 360º