Free counters!

Saturday, February 1, 2014

Finding Equation - Circle, 10

Category: Analytic Geometry, Plane Geometry, Algebra

"Published in Vacaville, California, USA"

Find the equation of a circle that is circumscribes a triangle determined by the lines y = 0, y = x, and 2x + 3y = 10.

Solution:

To illustrate the problem, it is better to draw the figure as follows

A circle that is circumscribes a triangle from the intersection of three lines. (Photo by Math Principles in Everyday Life)

The first thing that we need to do is to get the intersections of three lines that passes the curve of a circle. 

To get the coordinates of A, use equations y = 0 and y = x as follows:

Since the intersection of y = 0 and y = x is (0, 0) as shown from the figure, then the first point of intersection is A (0, 0).

To get the coordinates of B, use equations y = x and 2x + 3y = 10 as follows:


but 


then the above equation becomes,





If x = 2, then y = 2. Hence, the second point of intersection is B (2, 2).

To get the coordinates of C, use equations y = 0 and 2x + 3y = 10 as follows:


but


then the above equation becomes,






Hence, the third point of intersection is C (5, 0).

The general equation of a circle is


Since the three points of a circle are given, then we can solve for the values of D, E, and F.

If you will use A (0, 0), then the above equation becomes





If you will use C (5, 0), then the above equation becomes





but F = 0, then the above equation becomes





If you will use B (2, 2), then the above equation becomes





Substitute D = - 5 and F = 0, we have






Therefore, the equation of a circle is